Previous article Next article On Polynomial Expansions of Second-Order DistributionsE. Wong and J. B. ThomasE. Wong and J. B. Thomashttps://doi.org/10.1137/0110038PDFPDF PLUSBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] J. F. Barrett and , D. G. Lampard, An expansion for some second-order probability distributions and its application to noise problems, IRE Transactions on Information Theory, IT-1 (1955), 10–15 10.1109/TIT.1955.1055122 CrossrefISIGoogle Scholar[2] K. S. Miller, , R. I. Bernstein and , L. E. Blumenson, Rayleigh processes, Quart. Appl. Math., 16 (1958), 137–145, See, in particular, reference to private communication from D. G. Lampard MR0094862 0082.34503 CrossrefGoogle Scholar[3] Ming Chen Wang and , G. E. Uhlenbeck, On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323–342 10.1103/RevModPhys.17.323 MR0013266 0063.08172 CrossrefGoogle Scholar[4] A. A. Andronov, , L. S. Pontryagin and , A. A. Witt, On the statistical investigation of dynamic systems, J. Exp. and Th. Phys. (U. S. S. R.), 3 (1933), 165– Google Scholar[5] William Feller, An introduction to probability theory and its applications. Vol. I, John Wiley and Sons, Inc., New York, 1957xv+461, Chapter XIV MR0088081 0077.12201 Google Scholar[6] Harald Cramér, Mathematical Methods of Statistics, Princeton Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J., 1946, 248–249 MR0016588 0063.01014 Google Scholar[7] Dunham Jackson, Fourier Series and Orthogonal Polynomials, Carus Monograph Series, no. 6, Mathematical Association of America, Oberlin, Ohio, 1941, 142–148 MR0005912 0060.16910 Google Scholar[8] W. P. Elderton, Frequency Curves and Correlation, Cambridge University Press, Cambridge, England, 1938 Google Scholar[9] S. O. Rice, Mathematical analysis of random noise, Bell System Tech. J., 24 (1945), 46–156 MR0011918 0063.06487 CrossrefISIGoogle Scholar[10] E. Wong, Masters Thesis, Vector stochastic processes in problems of communication theory, Ph.D. Dissertation, Department of Electrical Engineering, Princeton University, 1959 Google Scholar[11] Samuel Karlin and , James McGregor, Classical diffusion processes and total positivity, J. Math. Anal. Appl., 1 (1960), 163–183 10.1016/0022-247X(60)90020-2 MR0121844 0101.11102 CrossrefGoogle Scholar[12] A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1955 Google Scholar[13] J. J. Bussgang, Cross-correlation function of amplitude-distorted Gaussian signals, Tech. Rep., 216, Res. Lab. of Electronics, M.I.T., Cambridge, Mass., 1952 Google Scholar[14] J. L. Brown, Jr., On a cross-correlation property for stationary random processes, IRE Trans. on Information Theory, IT-3 (1957), 28–31 10.1109/TIT.1957.1057390 CrossrefISIGoogle Scholar[15] Roy Leipnik, The effect of instantaneous nonlinear devices on cross-correlation, IRE Trans., IT-4 (1958), 73–76 10.1109/TIT.1958.1057445 MR0147321 0109.11102 CrossrefISIGoogle Scholar[16] L. A. Zadeh, Classification of nonlinear filters, IRE WESCON Conv. Rec., (1957), Google Scholar[17] David Middleton, An introduction to statistical communication theory, International Series in Pure and Applied Physics, McGraw-Hill Book Co., Inc., New York, 1960xix+1140, Chapter X MR0118561 Google Scholar[18] S. O. Rice, Distribution of the duration of fades in radio transmission: Gaussian noise model, Bell System Tech. J., 37 (1958), 581–635 MR0094269 CrossrefISIGoogle Scholar[19] D. A. Darling and , A. J. F. Siegert, A systematic approach to a class of problems in the theory of noise and other random phenomena—Part I, IRE Trans. on Information Theory, IT-3 (1957), 32–37 10.1109/TIT.1957.1057392 CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails A Diagonal Expansion for the 2 Dirichlet Probability Density FunctionP. A. LeeSIAM Journal on Applied Mathematics, Vol. 21, No. 1 | 12 July 2006AbstractPDF (767 KB)A Note on Positive Dependence and the Structure of Bivariate DistributionsD. R. JensenSIAM Journal on Applied Mathematics, Vol. 20, No. 4 | 12 July 2006AbstractPDF (429 KB)A Diagonal Expansion in Gegenbauer Polynomials for a Class of Second-Order Probability DensitiesJ. A. McFaddenSIAM Journal on Applied Mathematics, Vol. 14, No. 6 | 1 August 2006AbstractPDF (353 KB) Volume 10, Issue 3| 1962Journal of the Society for Industrial and Applied Mathematics History Submitted:25 April 1961Accepted:24 January 1962Published online:13 July 2006 InformationCopyright © 1962 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0110038Article page range:pp. 507-516ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics
Read full abstract