The selective and controlled formation of nanocrystals in glass is emerging as a versatile method to achieve functional photonics, optoelectronics, and quantum devices, such as single-photon emitters. Here, we investigate the use of wide-field polarimetric second-harmonic (SH) microscopy as a method to rapidly and nondestructively examine nanoscale crystal arrangements in laser-processed glass. As a case study, we investigate tellurite glass, where the formation of a trigonal tellurium (t-Te) nanocrystalline phase after femtosecond laser exposure was recently demonstrated. Combined with theoretical models, we show that wide-field polarimetric SH microscopy offers comprehensive information on the nanocrystals' orientation, distribution, and chirality. With its high imaging throughput and spatial resolution, this method has the potential not only to significantly accelerate investigations on laser-induced glass crystallization processes but also to provide a valuable tool for in situ process monitoring.