Dissipative Kerr soliton generation in chip-scale nonlinear resonators has recently observed remarkable advances, spanning from massively parallel communications, to self-referenced oscillators, and to dual-comb spectroscopy. Often working in the anomalous dispersion regime, unique driving protocols and dispersion in these nonlinear resonators have been examined to achieve the soliton and soliton-like temporal pulse shapes and coherent frequency comb generation. The normal dispersion regime provides a complementary approach to bridge the nonlinear dynamical studies, including the possibility of square pulse formation with flattop plateaus, or platicons. Here we report observations of square pulse formation in chip-scale frequency combs through stimulated pumping at one free spectral range and in silicon nitride rings with + 55 fs 2 / mm normal group velocity dispersion. Tuning of the platicon frequency comb via a varied sideband modulation frequency is examined in both spectral and temporal measurements. Determined by second-harmonic autocorrelation and cross correlation, we observe bright square platicon pulse of 17 ps pulse width on a 19 GHz flat frequency comb. With auxiliary-laser-assisted thermal stabilization, we surpass the thermal bistable dragging and extend the mode-locking access to narrower 2 ps platicon pulse states, supported by nonlinear dynamical modeling and boundary limit discussions.
Read full abstract