Using V:YAG as the saturable absorber, a diode-pumped passively Q-switched and mode-locked Nd:GdVO(4) laser at 1.34 microm is realized. Nearly 100% modulation depth of mode-locking has been achieved. The width of the mode-locked pulse is estimated to be less than 460 ps with 125 MHz repetition rate within an about 1 micros-long Q-switched pulse envelope. A maximum output power of 220 mW and Q-switched pulse energy of 10.5 microJ is obtained. Using the hyperbolic secant function methods, a fluctuation rate equation model considering the Gaussian distribution of the intracavity photon density and the population inversion in the gain medium as well as the ground-state population intensity of the saturable absorber has been proposed to describe the mode-locking process of diode-pumped Nd:GdVO(4)/V(3+):YAG laser. With the space-dependent rate equations solved numerically, the theoretical calculations reproduce the laser characteristics well.