ABSTRACT Landfast sea ice (LFSI) is sensitive to local climate change, making it an important component of the cryosphere system. In this study, the LFSI around the pan-Arctic domain was simulated from 1979 to 2021 using a well-validated snow and ice thermodynamic model (HIGHTSI) under the framework of the Fast Ice Prediction System (FIPS), forced by the ERA5 reanalysis. The simulation results agree well with the in-situ observations in the Canadian Arctic, with a mean error of −0.06 ± 0.29 m for ice thickness and −0.04 ± 0.12 m for snow depth. A decrease of −2.8 ± 0.4 cm/10a in thickness and −16.2 ± 1.5 km3/a in volume for the Arctic LFSI was modeled during this period. There was significant spatial variability among the different domains, with the fastest decline found in the Vilkitsky Strait. The modeled snow depth shows large interannual and spatial variations, which was confirmed by other modeling results. The spatiotemporal variations in both air temperature and precipitation are the driving factors for the multi-decadal variations in LFSI thickness. The decreasing air temperature during the 2010s aligned with a slower thickness decrease and a slight volume increase for LFSI, which agreed with the pan-Arctic sea ice pattern.
Read full abstract