Abstract

The Third Pole (TP) is the world’s largest highland and has one of the biggest reservoirs of glacier ice mass and snow cover on the Earth. Three major Asian rivers (the Indus, Ganga and Brahmaputra) are nourished by the melting of glaciers and snow in Central Himalaya, which are inevitable for the socioeconomic sustainability and water security of South Asia. Here, we investigate the long-term (1980–2020) changes in snow depth and precipitation in TP, where major precipitation occurs in the form of rainfall in summer, and snowfall in winter and spring. The seasonal mean snow depth is deep (≥1 m) in winter and shallow (≤0.2 m) in summer. The average snowmelt and snow water equivalent are higher in the central and western Himalaya and Karakoram ranges in spring, which are the regions with most glaciers in TP. There is a significant positive trend in total precipitation, about 0.01–0.03 mm d−1 yr−1 in the central and eastern TP during the South Asian Summer Monsoon for the 1980–2020 period. Snowmelt is also increasing (>0.5 × 10−3 mm yr−1) in the western Himalaya during spring, which is consistent with the temperature rise (0.04–0.06 °C yr−1) there. In addition, there is a notable increase in the annual mean glacier melt (here, the water equivalent thickness) in TP (−1 to −5 cm w.e. yr−1), with its highest values in the eastern and central Himalaya (−3 to −5 cm w.e. yr−1), as estimated for the period 2003–2020. On top of these, by the end of the 21st century, the Coupled Model Intercomparison Project Phase 6 (CMIP6) projections show that there would be a significant decrease in snow depth and an increase in temperature of TP in all shared socioeconomic pathways (SSPs). Henceforth, the increasing trend in temperature and melting of snow/glaciers in TP would be a serious threat to the regional climate, water security and livelihood of the people of South Asia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.