Blooms of the harmful dinoflagellate Karenia brevis on the West Florida Shelf (WFS), Gulf of Mexico, are hypothesized to initiate in association with the colonial cyanobacterium Trichodesmium spp. and benefit from dissolved organic nitrogen (DON) release derived from N2-fixation by the cyanobacteria. Previous studies have detected DON release using direct experimental measurements, but there have been few studies that have followed nutrient release by in situ blooms of Trichodesmium and the associated plankton community. It was determined that long-term Trichodesmium spp. and Karenia brevis abundances on the WFS were related, following a 2-month lag. A separate Eulerian study of a Trichodesmium erythraeum bloom event was conducted over 9 days on the Great Barrier Reef. Concentrations of T. erythraeum increased over the course of the study, with coincident increases in dinoflagellate abundance and decreases in diatom abundance. Inside the bloom, concentrations of NH4+, PO43−, and DON increased significantly. The copepod grazer Macrosetella gracilis also increased in abundance as T. erythraeum numbers increased, contributing to nutrient release. Copepod grazing rates were measured, and N release rates estimated. Together, these studies show that Trichodesmium blooms have consequences for dinoflagellate abundance at both seasonal and ephemeral scales via direct and indirect N release.
Read full abstract