Multiple respiratory viruses lead to high morbidity and mortality, yet global surveillance platforms focus primarily on seasonal influenza viruses. The COVID-19 pandemic and new RSV vaccines highlight the importance of a broader approach. Upper respiratory tract swabs from children aged 24-59months presenting with influenza-like illness in The Gambia were collected during follow-up of a live-attenuated influenza vaccine randomised controlled trial in 2017-18. A microfluidic quantitative polymerase chain reaction (qPCR) assay was established and used to detect 21 respiratory viruses. 76.6% of samples had one or more viruses detected (n = 121/158). The viruses detected most frequently were rhinovirus (n = 37/158, 23.4%) and adenovirus (n = 34/158, 21.5%), followed by parainfluenza virus 3, influenza B and human metapneumovirus B. A third of positive samples had multiple viruses detected (two n = 31/121, 25.6%; three n = 9/121, 7.4%). Our data demonstrates how microfluidic qPCR is a useful tool for high-throughput, comprehensive detection of multiple respiratory viruses in surveillance platforms. Rapidly changing epidemiology exemplifies the need for new, broader approaches to virus surveillance in low-resource settings to respond to future epidemics and to guide the need for and use of new prevention and therapeutic measures.
Read full abstract