Abstract
Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of in vitro viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.