The spatial-temporal structures of bottom reverberation are associated with seafloor features. In a bistatic bottom reverberation experiment involving a vertical transmitting array and a towed horizontal receiving array, stable stripe structures were observed within the beam-time domain. In this study, a bistatic reverberation model based on ray theory is presented to interpret the experimental phenomena. The conventional empirical scattering function is primarily applicable to small grazing angles. Moreover, the regional segmentation method simulates reverberations across various receiving beams, ignoring scatterers in other areas. To address these issues, we substitute the empirical scattering function with a small-slope approximation (SSA) that is appropriate for full grazing angles. Furthermore, we utilize the beam pattern of arrays to incorporate the effects of each scatterer, and derive the expression for bottom reverberation intensity in both the array and beam domains. The established model demonstrates its applicability in simulating and interpreting the stripe structures of bottom reverberation, and the comparison shows that the model outputs are in agreement with the experimental results. The analysis indicates that the vertical stripes within the structures originate from eigenrays in the mirror reflection direction. Furthermore, the convex stripes are predominantly affected by the direct ray and the surface reflection ray among the scattered eigenrays, whereas the concave and elliptical stripes are primarily affected by the bottom-surface reflection ray and the surface-bottom-surface reflection ray within the scattered eigenrays.
Read full abstract