Objectives The production cost of reverse osmosis (RO) seawater desalination plant is determined by the CAPEX (Capital expenditure) and OPEX (Operating expenditure). In detail, CAPEX and OPEX are composed of direct cost, overhead cost, electricity cost, and other O&M costs. However, CAPEX and OPEX may vary by country and region. Therefore, this study tries to estimate the production cost by calculating the construction and maintenance costs depending on production capacities based on the operation results such as TDS concentration and the energy consumption from a seawater desalination plant in Korea. Methods A two-stage RO based seawater desalination plant with a capacity of 10 MIGD (45,000 m3/d) was used in this study. The plant consists of a 2 MIGD (9,000 m3/d) unit having DABF (Dissolved air bio-ball filter) and UF (Ultrafiltration) as pretreatment processes, and another 8 MIGD (36,000 m3/d) unit having DABF and DMF (Dual media filtration) as pretreatment processes. To estimate the production cost, construction and maintenance costs were calculated by using GWI's Desaldata cost estimator. CAPEX (Capital expenditure) was calculated based on production capacity, recovery rate, TDS concentration and temperature of seawater, while OPEX (Operating expenditure) was calculated based on production capacity, country, energy consumption, and electricity unit price. Results and Discussion The energy consumptions from EMS (Energy Management System) were 5.48 kWh/m3 at SLC (9,000 m3/d) and 3.4 kWh/m3 at MLC (45,000 m3/d), respectively. In the CAPEX, MLC was reduced by 395,954 ₩/m3 compared to SLC, and the LLC was lower by 192,019 ₩/m3 than MLC. Overall, CAPEX decreased as the production capacity increased. The CAPEX of small plants with production capacity between 10,000 and 50,000 m3/d was significantly different; however, there was no significant difference in larger plants having a capacity above 100,000 m3/d. The OPEX for the annual production capacity showed a sizable difference with 742.3 ₩/m3, 636.5 ₩/m3 and 580.3 ₩/m3 for SLC, MLC, and LLC, respectively. The electricity cost was a substantial portion of OPEX. Also, the production costs based on the interest rates (3% and 5%) were 1,326-1,384 ₩/m3, 1,163-1,209 ₩/m3, and 1,023-1,070 ₩/m3 for SLC, MLC, and LLC, respectively. The results were consistent with 1.0 US$/m3, which is the average production costs presented from other references. Conclusions The production cost estimated using the Desaldata cost estimator based on the CAPEX and OPEX tends to decrease as the capacity increases. However, when the capacity increased over 50,000 m3/d, the production cost decreased by an average of 40 ₩/m3. Thus the decrement of production cost reduced. From these results, the production cost of tap water through seawater desalination was estimated between 1,023 ₩/m3 and 1,070 ₩/m3 above 100,000 m3/d. Therefore, it is difficult to introduce a large-scale desalination plant in Korea, because the average tap water price was 834.6 ₩ in Korea in 2017. However, It is expected that the seawater desalination will be introduced as an alternative water source whenever drinking water price rises, or when the quantity of available drinking water sources reduce due to climate change and water pollution, or whenever energy consumption is reduced as a result of the steady development of the component technologies such as the reverse osmosis membrane, high-pressure pump, and energy recovery device. Key words: Reverse osmosis seawater desalination plant, Water price, Capital expenditure, Operating expenditure, Energy consumption
Read full abstract