Cu(In, Ga)Se2 solar cells are the representative of high efficient thin-film solar cell with energy conversion efficiency of over 22%. However, nowadays, top electrodes of solar cells gradually become the performance limitation for optimized devices. The Al-doped ZnO thin film is widely used as a transparent top electrode in Cu(In, Ga)Se2, but there are still some techniques and electrical property issues. In this letter, we establish a ZnO/Ag/ZnO:Al multilayer top electrode, composed of ZnO nanorod arrays, Ag nanoparticles, and ZnO:Al thin films. Such multilayer top electrode was applied on Cu(In, Ga)Se2 thin-film solar cells and the devices yield a higher efficiency from 6.79% to 8.52%. Importantly, we also propose that the enhanced electronic carrier concentration in such ZnO/Ag/ZnO:Al top electrode aids the performance of solar cells. Therefore, well-designed ZnO-based top electrodes offer the opportunity to remove the bottleneck of improving the solar cell efficiency.
Read full abstract