The principle of the thread fastenings have been known and used for decades with the purpose of joining one component to another. Threaded fastenings are popular because they permit easy disassembly for maintenance, repair, relocation and recycling. Screw insertions are typically carried out manually. It is a difficult problem to automat. As a result there is very little published research on automating threaded fastenings, and most research on automated assembly focus on the peg-in-hole assembly problem. This paper investigates the problem of automated monitoring of the screw insertion process. The monitoring problem deals with predicting integrity of a threaded insertion, based on the torque vs. insertion depth curve generated during the insertions. The authors have developed an analytical model to predict the torque signature signals during self-tapping screw insertions. However, the model requires parameters on the screw dimensions and plate material properties are difficult to measure. This paper presents a study on on-line identification during screw fastenings. An identification methodology for two unknown parameter estimation during a self-tapping screw insertion process is presented. It is shown that friction and screw properties required by the model can be reliably estimated on-line. Experimental results are presented to validate the identification procedure.