Ovarian cancer is a silent killer and, due to late diagnosis and frequent chemo resistance in patients, the primary cause of fatality amongst the various types of gynecological cancer. The discovery of a specific and sensitive biomarker for ovarian cancer could improve early diagnosis, thereby saving lives. Biomarkers could also improve treatment, by predicting which patients will benefit from specific treatment strategies. DNA methylation is an epigenetic mechanism, and 'methylation imbalance' is characteristic of cancer. Previous research suggests that changes in DNA methylation can be used diagnostically, and that they may predict resistance to treatment. This paper gives an up-to-date overview of research investigating the potential of DNA methylation-based markers for diagnostics, prognostics, screening and prediction of drug resistance for ovarian cancer patients. DNA methylation cancer-biomarkers may be useful for cancer treatment, particularly since they are chemically stable and since cancer-associated changes in methylation typically precedes tumor growth. DNA methylation markers could improve diagnosis and treatment and might even be used for screening in the future. Furthermore, DNA methylation biomarkers could facilitate the development of precision medicine. However, at this point no biomarkers for ovarian cancer have a sufficient combination of sensitivity and specificity in a clinical setting. A reason for this is that most studies have focused on a single or a few methylation sites. More large screenings and genome-wide studies must be performed to increase the chance of identifying a DNA methylation marker which can identify ovarian cancer.
Read full abstract