The aim of this study was to investigate the expression level of circ-DONSON in glioma and to explore its effect on glioma metastasis and the underlying mechanism. Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was performed to examine circ-DONSON expression in 40 paired glioma tumor tissues and adjacent tissues. Meanwhile, the relation between circ-DONSON level and clinical parameters of glioma and the prognosis of patients was analyzed. The expression of circ-DONSON in glioma cell lines was analyzed by qRT-PCR as well. In addition, circs-DONSON silencing model was constructed in glioma cell lines. Cell counting kit-8 (CCK-8), cell scratch, and transwell migration assays were performed to investigate the effect of circ-DONSON on biological functions of glioma cells. Finally, the interplay between FOXO3 and circ-DONSON was explored. QRT-PCR results revealed that the expression level of circ-DONSON in glioma tumor tissues was remarkably higher than that of adjacent tissues, and the difference was statistically significant (p<0.05). Compared with patients with low expression of circ-DONSON, significantly higher prevalence of lymph node or distant metastasis and worse prognosis were observed in patients with high expression of circ-DONSON (p<0.05). The proliferation and migration abilities of glioma cells in circ-DONSON silenced group were remarkably suppressed when compared with NC group (p<0.05). Additionally, FOXO3 expression was remarkably down-regulated in glioma cell lines and tissues. FOXO3 expression was negatively correlated with circ-DONSON expression. In addition, cell reverse experiment demonstrated that circ-DONSON and FOXO3 can regulate each other, thereby together affecting the malignant progression of glioma. Circ-DONSON was remarkably associated with lymph node or distant metastasis, as well as poor prognosis of patients with glioma. Furthermore, it promoted the metastasis of glioma cells via regulating FOXO3.