Hydroxyapatite (HA, Ca10(PO4)6(OH)2) coatings, commonly used for metallic implants, have limitations such as excessive brittleness, low fracture toughness, inadequate wear resistance, and slow osseointegration properties. In contrast, baghdadite (BAG, Ca3ZrSi2O9), a calcium zirconium silicate-based bioceramic, exhibits outstanding biological properties, to promote cell proliferation and differentiation of human osteoblasts along with adequate mechanical strength. In this study, plasma-sprayed HA, BAG, and carbon nanotubes (CNT, 1 wt%, and 2 wt%) reinforced BAG coatings are deposited on titanium (Ti) substrate to enhance its mechanical as well as biological properties. The microhardness values of CNT-reinforced BAG coatings increase due to a decrease in porosity and the retention of CNT inside the BAG matrix. Progressive loading scratch tests are performed, revealing a reduction in wear volume loss from 15.051 mm3 to 12.574 mm3 and scratch rate from 43.262 mm3N−1 m−1 to 36.172 mm3N−1 m−1 with the addition of 2 wt% CNT in BAG coatings. The scratch hardness test results demonstrated that introducing CNT into BAG coating significantly enhances its performance, showing a remarkable 38.7 % improvement. In-vitro cell culture studies indicate excellent cell adhesion, growth, and proliferation of MC3T3-E1 osteoblast cells on the surfaces of the CNT-reinforced BAG coatings.
Read full abstract