Background and Objective:Machine learning models are vital for enhancing healthcare services. However, integrating them into health information systems (HISs) introduces challenges beyond clinical decision making, such as interoperability and diverse electronic health records (EHR) formats. We proposed Model Cabinet Architecture (MoCab), a framework designed to leverage fast healthcare interoperability resources (FHIR) as the standard for data storage and retrieval when deploying machine learning models across various HISs, addressing the challenges highlighted by platforms such as EPOCH®, ePRISM®, KETOS, and others. Methods:The MoCab architecture is designed to streamline predictive modeling in healthcare through a structured framework incorporating several specialized parts. The Data Service Center manages patient data retrieval from FHIR servers. These data are then processed by the Knowledge Model Center, where they are formatted and fed into predictive models. The Model Retraining Center is crucial in continuously updating these models to maintain accuracy in dynamic clinical environments. The framework further incorporates Clinical Decision Support (CDS) Hooks for issuing clinical alerts. It uses Substitutable Medical Apps Reusable Technologies (SMART) on FHIR to develop applications for displaying alerts, prediction results, and patient records. Results:The MoCab framework was demonstrated using three types of predictive models: a scoring model (qCSI), a machine learning model (NSTI), and a deep learning model (SPC), applied to synthetic data that mimic a major EHR system. The implementations showed how MoCab integrates predictive models with health data for clinical decision support, utilizing CDS Hooks and SMART on FHIR for seamless HIS integration. The demonstration confirmed the practical utility of MoCab in supporting clinical decision making, validated by its application in various healthcare settings. Conclusions:We demonstrate MoCab’s potential in promoting the interoperability of machine learning models and enhancing its utility across various EHRs. Despite facing challenges like FHIR adoption, MoCab addresses key challenges in adapting machine learning models within healthcare settings, paving the way for further enhancements and broader adoption.
Read full abstract