ObjectiveOsteoarthritis (OA) is characterized by cartilage degradation but also by other joint tissues modifications like subchondral bone sclerosis. In this study, we used a proteomic approach to compare secretome of osteoblast isolated from sclerotic (SC) or non sclerotic (NSC) area of OA subchondral bone.DesignSecretome was analyzed using differential quantitative and relative label free analysis on nanoUPLC G2 HDMS system. mRNA of the more differentially secreted proteins were quantified by RT-PCR in cell culture from 5 other patients. Finally, osteomodulin and fibulin-3 sequences were quantified by western blot and immunoassays in serum and culture supernatants.Results175 proteins were identified in NSC osteoblast secretome. Data are available via ProteomeXchange with identifier PXD008494. Compared to NSC osteoblast secretome, 12 proteins were significantly less secreted (Osteomodulin, IGFBP5, VCAM-1, IGF2, 78 kDa glucose-regulated protein, versican, calumenin, IGFBP2, thrombospondin-4, periostin, reticulocalbin 1 and osteonectin), and 13 proteins were significantly more secreted by SC osteoblasts (CHI3L1, fibulin-3, SERPINE2, IGFBP6, SH3BGRL3, SERPINE1, reticulocalbin3, alpha-2-HS-glycoprotein, TIMP-2, IGFBP3, TIMP-1, SERPINF1, CSF-1). Similar changes in osteomodulin, IGF2, SERPINE1, fibulin-3 and CHI3L1 mRNA levels were observed. ELISAs assays confirm the decrease by half of osteomodulin protein in SC osteoblasts supernatant compared to NSC and in OA patients serum compared to healthy subjects. Fibulin-3 epitopes Fib3-1, Fib3-2 and Fib3-3 were also increased in SC osteoblasts supernatant compared to NSC.ConclusionsWe highlighted some proteins differentially secreted by the osteoblasts coming from OA subchondral bone sclerosis. These changes contribute to explain some features observed in OA subchondral bone, like the increase of bone remodeling or abnormalities in bone matrix mineralization. Among identified proteins, osteomodulin was found decreased and fibulin-3 increased in serum of OA patients. These findings suggest that osteomodulin and fibulin-3 fragments could be biomarkers to monitor early changes in subchondral bone metabolism in OA.
Read full abstract