Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.
Read full abstract