To control the release of nerve growth factor (NGF) in the injured peripheral nerve, NGF-loaded chitosan/PLGA composite microspheres ionically cross-linked by tripolyphosphate (TPP/Chitosan/PLGA-NGF) were prepared. The encapsulation efficiency of NGF ranged from 83.4 ± 1.5 % to 72.1 ± 1.6 % with TPP concentrations from 1 % to 10 %. Zeta potential and FT-IR analyses together with confocal microscopy demonstrated that multiple NGF-loaded PLGA microspheres were embedded in chitosan matrix, the mean size of TPP/Chitosan/PLGA-NGF microspheres ranged from 40.2 ± 3.4 to 49.3 ± 3.1 μm. The increase of TPP concentration improved the network stability and decreased the swelling ratio, resulting in the decreased NGF release from 67.7 ± 1.2 % to 45.7 ± 0.8 % in 49 days. The sustained release of NGF could promote PC12 cells differentiation and neurite growth in vitro. Moreover, in comparison with NGF solution without microencapsulation, TPP/Chitosan/PLGA-NGF microspheres enhanced sciatic nerve regeneration and prevented gastrocnemius muscle atrophy in rats. These results demonstrate the feasibility of using TPP/Chitosan/PLGA-NGF microspheres for neural tissue repair.