We study the existence and multiplicity of solutions for the Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u + \phi u = \omega u \quad\text{ in } \Omega \cr a^2\Delta^2\phi-\Delta \phi = u^2 \quad\text{ in } \Omega \cr u=\phi=\Delta\phi=0\quad\text{ on } \partial\Omega \cr \int_{\Omega} u^2\,dx =1 }$$ where \(\Omega\) is an open bounded and smooth domain in \(\mathbb R^{3}\), \(a>0 \) is the Bopp-Podolsky parameter. The unknowns are \(u,\phi:\Omega\to \mathbb R\) and \(\omega\in\mathbb R\). By using variational methods we show that for any \(a>0\) there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrodinger-Poisson system, as \(a\to 0\). For more information see https://ejde.math.txstate.edu/Volumes/2023/66/abstr.html
Read full abstract