Abstract
In this article we consider the fractional Schrodinger-Poisson system $$\displaylines{ (-\Delta)^{s} u - \mu \frac{\Phi(x/|x|)}{|x|^{2s}} u +\lambda \phi u = |u|^{2^*_s-2}u,\quad \text{in } \mathbb{R}^3,\cr (-\Delta)^t \phi = u^2, \quad \text{in } \mathbb{R}^3, }$$ where \(s\in(0,3/4)\), \(t\in(0,1)\), \(2t+4s=3\), \(\lambda>0\) and \(2^*_s=6/(3-2s)\) is the Sobolev critical exponent. By using perturbation method, we establish the existence of a solution for \(\lambda\) small enough. For more information see https://ejde.math.txstate.edu/Volumes/2020/01/abstr.html
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.