Aedes aegypti transmits arbovirus, which is a public health concern. Certain filamentous fungi have the potential to control the disease. Here, the effects of Metarhizium anisopliae s.l. CG 153, Beauveria bassiana s.l. CG 206 and Schinus molle L. were investigated against Aedes aegypti larvae. In addition, the effect of essential oil on fungal development was analyzed. Fungal germination was assessed after combination with essential oil at 0.0025 %, 0.0075 %, 0.005 %, or 0.01 %; all of the oil concentrations affected germination except 0.0025 % (v/v). Larvae were exposed to 0.0025 %, 0.0075 %, 0.005 %, or 0.01 % of the essential oil or Tween 80 at 0.01 %; however, only the essential oil at 0.0025 % achieved similar results as the control. Larvae were exposed to fungi at 107 conidia mL-1 alone or in combination with the essential oil at 0.0025 %. Regardless of the combination, M. anisopliae reduced the median survival time of mosquitoes more than B. bassiana. The cumulative survival of mosquitoes exposed to M. anisopliae alone or in combination with essential oil was 7.5 % and 2 %, respectively, and for B. bassiana, it was 75 % and 71 %, respectively. M. anisopliae + essential oil had a synergistic effect against larvae, whereas B. bassiana + essential oil was antagonistic. Scanning and transmission electron microscopy, and histopathology confirmed that the interaction of M. anisopliae was through the gut and hemocoel. In contrast, the mosquito’s gut was the main route for invasion by B. bassiana. Results from gas chromatography studies demonstrated sabinene and bicyclogermacrene as the main compounds of S. molle, and the in-silico investigation found evidence that both compounds affect a wide range of biological activity. For the first time, we demonstrated the potential of S. molle and its interaction with both fungal strains against A. aegypti larvae. Moreover, for the first time, we reported that S. molle might be responsible for significant changes in larval physiology. This study provides new insights into host-pathogen interplay and contributes to a better understanding of pathogenesis in mosquitoes, which have significant consequences for biological control strategies.
Read full abstract