Smart meters play a crucial role in the functioning of the smart grid by rapidly collecting and transmitting power consumption data to electricity companies. However, the real-time nature of smart meter data poses privacy risks for customers. To address this concern, encrypted aggregation of smart meter power consumption has been widely employed to protect customer privacy. In this paper, we propose an innovative scheme designed specifically for smart grids to fulfill these requirements. Our scheme demonstrates superior performance compared to existing solutions in terms of communication cost, computation, and functionality features. The proposed authentication protocol not only enables the secure sharing of power consumption data but also satisfies various security requirements, including mutual authentication, anonymity, prevention of man-in-the-middle attacks, and more. Furthermore, our framework exhibits significantly lower computing, communication, and storage overhead compared to similar schemes in the context of smart grids. This highlights the comprehensive and secure nature of our suggested framework, surpassing other existing smart grid schemes in terms of overall effectiveness and reliability.
Read full abstract