The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size n) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter H>1/3 and its Malliavin derivatives.
Read full abstract