Abstract
The strong convergence rate of the Euler scheme for stochastic differential equations driven by additive fractional Brownian motions is studied, where the fractional Brownian motion has Hurst parameter H∈(13,12) and the drift coefficient is not required to be bounded. The Malliavin calculus, the rough path theory and the 2D Young integral are utilized to overcome the difficulties caused by the low regularity of the fractional Brownian motion and the unboundedness of the drift coefficient. The Euler scheme is proved to have strong order 2H for the case that the drift coefficient has bounded derivatives up to order three and have strong order H+12 for linear cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.