Herein, we present a study on the adsorption of one water molecule (bonded to either Bi or V sites) and two water molecules (bonded to both Bi and V sites) onto seven low-index surfaces (001), (010), (011), (100), (101), (110), and (111) as well as one high-index surface (211) of a monoclinic scheelite-type BiVO4 crystal structure using ab initio calculations. By predicting the adsorption energies for different facets, we find that water adsorption is more likely to occur on Bi sites. However, for the (001) and (211) surfaces, water adsorption is more likely on the V sites. Furthermore, we find that the studied low-index facets can be grouped into four distinct categories. Facets within the same group exhibit similar water adsorption energies. These groups are ((001)), ((010), (100)), ((110)), and ((011), (101), (111)). For low-index surfaces, favorable adsorption occurs on the (001) surface on the V sites.