The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, quantum state tomography, magnetic resonance imaging, system identification and control, and it is generally NP-hard. Recently, Majumdar and Ward [Majumdar, A and RK Ward (2011). An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magnetic Resonance Imaging, 29, 408–417]. had successfully applied nonconvex Schatten p-minimization relaxation of LMR in magnetic resonance imaging. In this paper, our main aim is to establish RIP theoretical result for exact LMR via nonconvex Schatten p-minimization. Carefully speaking, letting [Formula: see text] be a linear transformation from ℝm×n into ℝs and r be the rank of recovered matrix X ∈ ℝm×n, and if [Formula: see text] satisfies the RIP condition [Formula: see text] for a given positive integer k ∈ {1, 2, …, m – r}, then r-rank matrix can be exactly recovered. In particular, we obtain a uniform bound on restricted isometry constant [Formula: see text] for any p ∈ (0, 1] for LMR via Schatten p-minimization.
Read full abstract