Abstract

Let $A_1, ... A_n$ be operators acting on a separable complex Hilbert space such that $\sum_{i=1}^n A_i=0$. It is shown that if $A_1, ... A_n$ belong to a Schatten $p$-class, for some $p>0$, then 2^{p/2}n^{p-1} \sum_{i=1}^n \|A_i\|^p_p \leq \sum_{i,j=1}^n\|A_i\pm A_j\|^p_p for $0<p\leq 2$, and the reverse inequality holds for $2\leq p<\infty$. Moreover, \sum_{i,j=1}^n\|A_i\pm A_j\|^2_p \leq 2n^{2/p} \sum_{i=1}^n \|A_i\|^2_p for $0<p\leq 2$, and the reverse inequality holds for $2\leq p<\infty$. These inequalities are related to a characterization of inner product spaces due to E.R. Lorch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.