Three-dimensional (3D) Scene Understanding achieves environmental perception by extracting and analyzing point cloud data with wide applications including virtual reality, robotics, etc. Previous methods align the 2D image feature from a pre-trained CLIP model and the 3D point cloud feature for the open vocabulary scene understanding ability. We believe that existing methods have the following two deficiencies: (1) the 3D feature extraction process ignores the challenges of real scenarios, i.e., point cloud data are very sparse and even incomplete; (2) the training stage lacks direct text supervision, leading to inconsistency with the inference stage. To address the first issue, we employ a Masked Consistency training policy. Specifically, during the alignment of 3D and 2D features, we mask some 3D features to force the model to understand the entire scene using only partial 3D features. For the second issue, we generate pseudo-text labels and align them with the 3D features during the training process. In particular, we first generate a description for each 2D image belonging to the same 3D scene and then use a summarization model to fuse these descriptions into a single description of the scene. Subsequently, we align 2D-3D features and 3D-text features simultaneously during training. Massive experiments demonstrate the effectiveness of our method, outperforming state-of-the-art approaches.
Read full abstract