Internal fixation devices made of nickel-titanium (NiTi) staples have the advantage of producing compressive stress at the fracture site due to their unique shape memory effect and superelasticity. In the present study, a comparison was made between two commercial NiTi staples of the same size but with different bridge configurations, used for scaphoid fracture fixation. The staple and scaphoid anatomical configurations were modeled using SolidWorks, while ABAQUS software was used to analyze the stress and displacement caused by staples and distributed in the scaphoid waist. In the staple with a straight bridge, the regions under the tips of the staple legs underwent the largest stress, whereas there was negligible stress in the regions closer to the staple bridge. In the staple with an S-shaped bridge, the stress concentration was highly localized in the region close to the staple bridge, with a maximum stress that was over eight times higher than in the staple with a straight bridge. Considering the amount and distribution of stress in both staples, neither of the staples was able to create the ideal healing condition on the fracture surface.