In an earlier publication, [Appl. Opt.51, 5791 (2012)] we demonstrated by theoretical analysis that a snapshot imaging polarimeter using modified Savart polariscopes (MSP-SIP) is comparable in carrier frequency, signal-to-noise ratio, and spatial resolution to a snapshot imaging polarimeter using conventional Savart polariscopes. In this investigation, numerical simulation is used to demonstrate the feasibility of MSP-SIP and investigate the limitation of the filtration and the Fourier analysis decoupling the polarization information encoded through the spatial modulation. In addition, a laboratory experiment is conducted to demonstrate the validity of MSP-SIP. The MSP-SIP operates on the principle of encoding polarization information within the spatial modulation of the image. This unique technology allows all Stokes parameters to be simultaneously recorded from every spatial position in an image with a single integration period of the imaging system. The device contains no moving parts and requires no scanning, allowing it to acquire data without the motion artifacts normally associated with a scanning polarimeter. In addition to snapshot imaging and static (no moving parts) capabilities, image processing is simple, and the device is compact and miniature. Therefore, we believe that MSP-SIP will be useful in many applications, such as remote sensing and bioscience.