The three-dimensional (3D) normal distributions transform (NDT) is a popular scan registration method for 3D point cloud datasets. It has been widely used in sensor-based localization and mapping applications. However, the NDT cannot entirely utilize the computing power of modern many-core processors, such as graphics processing units (GPUs), because of the NDT’s linear nature. In this study, we investigated the use of NVIDIA’s GPUs and their programming platform called compute unified device architecture (CUDA) to accelerate the NDT algorithm. We proposed a design and implementation of our GPU-accelerated 3D NDT (GPU NDT). Our methods can achieve a speedup rate of up to 34 times, compared with the NDT implemented in the point cloud library (PCL).
Read full abstract