Stroke is a leading cause of mortality worldwide and a major cause of disability having a high burden on patients, society, and caregiving systems. This study was conducted to investigate the presence of clusters of in-hospital patients with acute stroke based on demographic and clinical data. Cluster analysis reveals patterns in patient characteristics without requiring knowledge of a predefined patient category or assumptions about likely groupings within the data. We performed a secondary analysis of open-access anonymized data from patients with acute stroke admitted to a hospital between December 2019 to June 2021. In total, 216 patients (78; 36.1% men) were included in the analytical dataset with a mean (SD) age of 60.3 (14.4). Many demographic and clinical features were included in the analysis and the Barthel Index on discharge was used for comparing the functional recovery of the identified clusters. Hierarchical clustering based on the principal components identified two clusters of 109 and 107 patients. The clusters were different in the Barthel Index scores on discharge with the mean (SD) of 39.3 (29.3) versus 62.6 (29.4); t (213.87) = -5.818, P <0.001, Cohen's d (95%CI) = -0.80 (-1.07, -0.52). A logistic model showed that age, systolic blood pressure, pulse rate, D-dimer blood level, low-density lipoprotein, hemoglobin, creatinine concentration, the National Institute of Health Stroke Scale value, and the Barthel Index scores on admission were significant predictors of cluster profiles (all P ≤0.029). There are two clusters in hospitalized patients with acute stroke with significantly different functional recovery. This allows prognostic grouping of hospitalized acute stroke patients for prioritization of care or resource allocation. The clusters can be recognized using easily measured demographic and clinical features.