We evaluate all two-body decay modes of the heavy scalar tau in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) and no generation mixing. The evaluation is based on a full one-loop calculation of all decay channels, also including hard and soft QED radiation. The renormalization of the relevant sectors is briefly reviewed. The dependence of the heavy scalar tau decay on the relevant cMSSM parameters is analyzed numerically, including also the decay to Higgs bosons and another scalar lepton or to a tau and the lightest neutralino. We find sizable contributions to many partial decay widths and branching ratios. They are mostly of O(5-10%) of the tree-level results, but can go up to 20%. These contributions are potentially important for the correct interpretation of scalar tau decays at the LHC and, if kinematically allowed, at the ILC or CLIC. The evaluation of the branching ratios of the heavy scalar tau will be implemented into the Fortran code FeynHiggs.