AbstractDetrital coesite-bearing garnet is the final product of a complex geological cycle including coesite entrapment at ultra-high-pressure conditions, exhumation to Earth’s surface, erosion and sedimentary transport. In contrast to the usual enrichment of high-grade metamorphic garnet in medium- to coarse-sand fractions, coesite-bearing grains are often enriched in the very-fine-sand fraction. To understand this imbalance, we analyse the role of source-rock lithology, inclusion size, inclusion frequency and fluid infiltration on the grain-size heterogeneity of coesite-bearing garnet based on a dataset of 2100 inclusion-bearing grains, of which 93 contain coesite, from the Saxonian Erzgebirge, Germany. By combining inclusion assemblages and garnet chemistry, we show that (1) mafic garnet contains a low number of coesite inclusions per grain and is enriched in the coarse fraction, and (2) felsic garnet contains variable amounts of coesite inclusions per grain, whereby coesite-poor grains are enriched in the coarse fraction and coesite-rich grains extensively disintegrated into smaller fragments resulting in an enrichment in the fine fraction. Raman images reveal that: small coesite inclusions of dimension < 9 µm are primarily monomineralic, whereas larger inclusions partially transformed to quartz; and garnet fracturing, fluid infiltration and the coesite-to-quartz transformation is a late process during exhumation taking place at c. 330°C. A model for the disintegration of coesite-bearing garnet enables the heterogeneous grain-size distribution to be explained by inclusion frequency. High abundances of coesite inclusions cause a high degree of fracturing and fracture connections to smaller inclusions, allowing fluid infiltration and the transformation to quartz, which in turn further promotes garnet disintegration.