Abstract

AbstractAlthough oriented rutile needles in garnet have been reported from several ultrahigh‐pressure (UHP) rocks and considered to be important UHP indicators, their crystallographic features including growth habit and lattice correspondences with garnet host have never been properly characterized. This paper presents a detailed analytical electron microscopic (AEM) study on evenly distributed oriented rutile needles in garnet of two eclogitic rocks from Sulu. Some garnet in one UHP diamondiferous quartzofeldspathic rock from the Saxonian Erzgebirge, and in one high‐pressure (HP) felsic granulite from Bohemia also contain a few unevenly distributed oriented rutile needles. They have also been studied for the purpose of comparison. Despite different distribution patterns, AEM revealed that all rutile needles are oriented along the 〈111〉 directions of garnet with their lateral sides surrounded by the {110} planes of garnet, and that the growth directions of most needles are close to the normal of the {101} planes of rutile. No other specific crystallographic orientation relationships between rutile and garnet host were observed, and there is no pyroxene associated with rutile, as necessitated by the precipitation reaction of rutile in garnet as previously proposed. A simple solid‐state precipitation scenario for the formation of the rutile needles in garnet in these two eclogitic rocks is not justified. Three alternative mechanisms are considered for the formation of oriented rutile needles: (i) the rutile needles may be inherited from precursor minerals; (ii) the rutile needles may be formed by a dissolution–reprecipitation mechanism; and (iii) the rutile needles may be formed by cleaving and healing of garnet with rutile deposition. None of these mechanisms can fully explain the observations, although the first one is less likely and the third one is preferred. This study presents an example where the presence of oriented/aligned inclusions in minerals does not necessarily imply a precipitation origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.