The response of soil CO2 fluxes (Rsoil) to interactions between carbon (C) and nitrogen (N) availability or C and temperature conditions is not well understood, but may increasingly affect future C storage under the combined anthropogenic impacts of N deposition and climate change. Here we addressed this uncertainty through a series of laboratory incubation experiments using soils from three contrasting ecosystems to investigate how changes in C, N, and temperature regulate Rsoil through changes to Michaelis–Menten parameters (i.e. Vmax and Km). Results of this study demonstrate that Rsoil response to N enrichment and changes in temperature are dependent on the C availability of soil substrates. N addition influenced Rsoil through both the maximum rate (Vmax) and the half saturation constant (Km). The increase in Km corresponded to a decrease in Rsoil when C was limited. Alternatively, when C was abundant, N enrichment increased Rsoil, which corresponded to an increase in Vmax. Regulation of temperature sensitivity through Vmax and Km was also dependent on C availability. Both Vmax and Km demonstrated positive temperature responses, supporting the hypothesis of a canceling effect at low C concentrations. While temperature sensitivity was influenced by both C quantity and C complexity, our results suggested that C quantity is a stronger predictor. Despite strong differences in climate, vegetation, and management of our soils, C–N and C-temperature interactions were markedly similar between sites, highlighting the importance of C availability in the regulation of Rsoil and justifying the use of Michaelis–Menten kinetics in biogeochemical modeling.