A new decision-based algorithm has been proposed for the restoration of digital images which are highly contaminated by the saturated impulse noise (i.e., salt-and-pepper noise). The proposed denoising algorithm performs filtering operation only to the corrupted pixels in the image, keeping uncorrupted pixels intact. The present study has used a coupled window scheme for the removal of high density noise. It has used sliding window of increasing dimension, centered at any pixel and replaced the noisy pixels consecutively by the median value of the window. However, if the entire pixels in the window are noisy, then the dimension of sliding window is increased in order to obtain the noise-free pixels for median calculation. Consequently, this algorithm has been found to be able to remove the high density salt-and-pepper noise and also preserved the fine details of the four images, Lena, Elaine, Rhythm, and Sunny, used as test images in this study (The latter two real-life images have been acquired using Sony: Steady Shot DSC- S3000). Experimentally, it has been found that the proposed algorithm yields better peak signal-to-noise ratio, image enhancement factor, structural similarity index measure and image quality index, compared with the other state-of-art median-based filters viz. standard median filter, adaptive median filter, progressive switched median filter, modified decision-based algorithm and modified decision-based unsymmetric trimmed median filter.