Eight-cell-stage to pre-compaction morula are the most used embryonic stages to aggregation, because the embryos, in these early stages, synthesise cell adhesion molecules that increase the aggregation chances among them (Vestweber et al. 1987 Develop. Biol. 124, 451–456). Although post-compaction embryos produce reduced aggregation rates, they are not refractory to this process (Nogueira et al. 2010 Transgenic Res. 19, 344–345). Based on the evidence of less permissive aggregation in post-compaction-stage embryos and the need to expose the inner surface of those embryos to improve aggregation rate, the aim of this study was to evaluate, in mice, the influence of cell quantity (i.e. the quantity of half-embryos put together to aggregate themselves) in the chimerism rate of split blastocysts. Embryos, with preferentially different phenotypes, were obtained from C57BL/6/EGFP and Swiss Webster strains. Females ranging from 21 to 45 days old were superstimulated and mated according to Mancini et al. (2008 Transgenic Res. 17, 1015). Eight-cell-stage embryos (8C) and pre-compaction morula (PCM) were recovered (2 to 2.5 days post coitum) and had their zona pellucida removed using pronase treatment (2 mg mL–1 for 15 min), whereas blastocysts (recovered 3.5 dpc) were split with a microblade controlled by micromanipulator in an inverted microscope (NK2; Eppendorf, Hamburg, Germany and Eclipse Ti; Nikon, Tokyo, Japan, respectively). The aggregation groups were a control (C) with 2 pre-compaction whole embryos (8C or PCM, or both) and 2 experimental with post-compaction embryos [i.e. 2 (2DB) or 4 (4DB) demi-blastocysts]. The structures (2 or 4) of the groups were stuck to each other with the use of phytohemagglutinin (1 mg mL–1) and cultured in vitro by 24 h (37°C, 5% CO2 and saturated humidity). After culture, the presence of chimeric embryos was verified by detection of a single, cohesive cell mass or a structure in an 8 shape with more than one-half of its total diameter aggregated. For the 4DB group, a successful aggregation was considered when, at least 2 of 4 DB had aggregated. The results were analysed using chi-square test, Fisher's exact test and Kruskal-Wallis (to compare among groups, between groups and among medians of group replicates, respectively) and significance was considered when P < 0.05. The aggregation rates for the groups C, 2DB and 4DB were, respectively, 77.3a; 8.3b and 36.4%c (P < 0.001). The increasing of the aggregation technique efficacy, in post-compaction stages, would be particularly interesting in farm animals (e.g. bovine species), where it is not feasible to obtain, in vivo, pre-compaction stages embryos (as 8 cells) and when only trophectoderm aggregation is wanted. It was concluded that cell increasing (from 2 to 4 DB) improved the chimerism rate, but not enough to be similar to the control group. Supported by FAPESP of Brazil.
Read full abstract