Simultaneous satellite-derived observations from 2002 to 2009 are used to quantify the relation between sea surface temperature (SST) fronts and ocean winds in the California Current System (CCS). An edge-detection algorithm is applied to SST observations to generate monthly maps of frontal probabilities. Empirical orthogonal decompositions reveal that the seasonal evolution of fronts in the CCS is strongly related to the seasonal evolution of coastal alongshore wind stress. The seasonal development of SST fronts is remarkably different to the north and to the south of Cape Mendocino, however. While fronts to the north of the cape extend for hundreds of kilometers from the coast peaking during summer and fall, when upwelling winds are stronger off northern California and Oregon, the region to the south of Cape Mendocino is characterized by high frontal activity during spring in a much narrower band close to the coast. Throughout the region, anomalies in the intensity of upwelling-favorable wind stress are followed by anomalies in frontal activity. The width and speed of the widening of the region of high frontal activity are also related to coastal alongshore wind stress. Interannual variability in the timing of the widening of the region of high frontal activity in the lee of Cape Blanco compared to the timing of the spring transition to upwelling-favorable winds may be related to the wind stress curl distribution in the lee of the cape. Stronger upwelling-favorable wind stress curl anomalies lead to early widening of the region of high frontal activity.
Read full abstract