Photocatalytic hydrogen (H2) evolution can effectively solve the global energy problem, in which the key factor is the synthesis of efficient photocatalytic materials. In this study, we successfully synthesized a novel photocatalyst, BiWCo/CuS/PGCN, by functionalizing porous graphitic carbon nitride (PGCN) with sandwich-type polyoxometalate Na3.5Co4[Bi2Co2W19.75O70(H2O)6]·39.5H2O (BiWCo) and introducing copper sulfide (CuS) nanoparticles as a cocatalyst. This approach was aimed at enhancing the built inner electric field between interfaces, resulting in a significant improvement in photocatalytic H2 evolution performance. This research adopts a step-by-step method to synthesize BiWCo/CuS/PGCN composites with p-n heterojunctions, which has high visible light absorption and a synergistic effect of multiple elements. PGCN with a high specific surface area contributes to the uniform distribution of active sites. In addition, the nano-CuS cocatalyst provides abundant active sites and more electron transfer pathways for photocatalysis. Therefore, the H2 production efficiency of BiWCo/CuS/PGCN is 6.3 times that of PGCN, 4.5 times that of BiWCo and 2.5 times that of BiWCo/PGCN under visible light. The H2 production rate of BiWCo/CuS/PGCN reaches 3477.58 μmol g-1 h-1. At the same time, the ternary photocatalyst shows high stability after 30 hours and 5 cycles. This work demonstrates that BiWCo/CuS/PGCN has good application prospects in H2 evolution, and provides a new strategy for the design of efficient ternary photocatalytic materials.
Read full abstract