Optical examination employing transmitted light and UV-fluorescence microscopy of palynological preparations of eighteen cutting samples representing the Alam El Bueib Member (Hautervian-Barremian), Kharita/lower Bahariya (Cenomanian), and Abu Roash (Turonian-Santonian) formations collected from the Faghur Hj5-1 well, north Western Desert, Egypt, allows the identification of three different palynological assemblages from the studied rock units. These assemblages are mainly non-marine but apparently marine at the base of the Alam El Bueib Member, as evidenced by dinocyst occurrence. In addition, the presence of the Pediastrum and chlorophycean algae ecozone, recognised in previous works, is a good datum for the Abu Roash Formation in the north Western Desert of Egypt. Three associations of palynofacies linked to lithofacies changes are recognised and employed in identification of depositional environments. The Alam El Bueib samples yielded mixed kerogen assemblages of non-marine and marine organic facies. The Kharita/lower Bahariya interval is mostly barren, possibly due to prevailing sandstone lithofacies, except for one sample at its upper part which contains a diverse palynological assemblage. The overlying Abu Roash Formation has a homogeneous kerogen composition comprising mainly granular fluorescent AOM and algae as well as rare palynomorphs. Qualitative as well as quantitative variations of palynofacies allow the reconstruction of the depositional environment. The obtained data have the potential for discriminating spatial and redox status differences and providing also information about terrestrial/freshwater influxes. Results support the model that the Alam El Bueib Member was deposited in a marginal dysoxic-anoxic to distal suboxic-anoxic basin. The Kharita/lower Bahariya unit in the studied well was deposited under marginal dysoxic-anoxic conditions whereas the overlying Abu Roash Formation in a distal suboxic-anoxic basin. Palynofacies results also show that the studied material comprises two distinct facies of kerogen. First, Type II > I kerogen (AOM-rich) is overwhelmingly dominant in the Abu Roash Formation and a few samples from the Alam El Bueib Member which are presumed highly oil-prone, whereas Type III kerogen (phytoclast-rich) is particularly common in the Alam El Bueib Member and Kharita/lower Bahariya unit which are considered gas-prone. Thermal maturity determinations obtained from colour changes of smooth-walled palynomorphs reveal that Alam El Bueib samples belong to immature to mature stages; however, Kharita/lower Bahariya and Abu Roash samples are within the immature phase.
Read full abstract