The study was designed to test the feasibility of using 3D-printed pollen traps for long-term monitoring of Bombus terrestris colonies' exposure to pesticide residues in pollen loads collected by them, along with an assessment of the resulting risks to the bumblebee's adults, larvae, and queens. Bumblebee colonies were placed in the vicinity of flowering orchards, winter oilseed rape, allotments, or home gardens for 6 weeks of the experiment. Pollen traps printed in 3D technology were installed in the hive inlets. The weight of bumblebee pollen loads obtained using pollen traps was in the range of 0.036–5.83 g. Pollen load samples were analyzed for residues of up to 261 pesticides and their metabolites by liquid and gas chromatography techniques coupled to tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Residues of 18 fungicides, 12 herbicides, 6 insecticides, and an acaricide were detected. Herbicide – pendimethalin, fungicide – thiophanate-methyl, and insecticide – chlorpyrifos-ethyl were the most commonly detected pesticides. Chlorpyrifos and thiacloprid residues were detected in pollen load samples in the next year after their ban from use as plant protection products in the European Union. The risk of acute or chronic effects was assessed as negligible or low, although the chronic risk of bumblebee queens to insecticide chlorpyrifos and the acute risk of larvae exposed to acaricide fenpyroximate could be interpreted as moderate. The risk of sublethal effects related to chronic exposure of adult bumblebees and queens to pollen loads contaminated by chlorpyrifos-ethyl and cypermethrin cannot be excluded. The risk of chronic toxicity or sublethal effects may be particularly relevant for bumblebee queens, especially during their foraging in the initial period of establishing a new colony.