In the preparation of thermally conductive polymer composites (TCPC), it is necessary to incorporate a filler network in the polymer matrix. Further enhancement of the thermal conductivity (TC) of TCPCs is challenging due to the exceptional heat absorption of the polymer matrix, which results in heat flow losses in the network. To address this issue, a novel procedure, termed thermal network dredging-plugging, has been proposed. In this study, polydimethylsiloxane (PDMS) composites with a carbon fiber powder (CFP) network and a CFP/glass ball (GB) network enhanced by dredging-plugging were prepared by a coating method. The TC of the PDMS/CFP system increased with an increase in CFP loading from 0 to 12 wt% and a decrease in sample thickness from 0.4 to 0.2 mm. At a 12 wt% CFP loading, the PDMS/CFP composites exhibited a maximum TC of 4.687 W/(mK). With the addition of GBs ranging from 0 to 2 wt%, the dredging-plugging CFP/GB network increased the maximum TC by a factor of 1.26 relative to the dredged CFP network. In conjunction with the thermal resistance method, a mathematical model that considers both the plugging and dilution effects of GBs was constructed. The calculated TCs were validated by using the prepared PDMS/CFP/GB composites, with average absolute relative errors ranging from 0.5 % to 4.19 %. In addition to TC enhancement, the mechanical properties and thermal management of the PDMS composites were evaluated.
Read full abstract