The discovery of rare genetic variants through next generation sequencing is a very challenging issue in the field of human genetics. We propose a novel region-based statistical approach based on a Bayes Factor (BF) to assess evidence of association between a set of rare variants (RVs) located on the same genomic region and a disease outcome in the context of case-control design. Marginal likelihoods are computed under the null and alternative hypotheses assuming a binomial distribution for the RV count in the region and a beta or mixture of Dirac and beta prior distribution for the probability of RV. We derive the theoretical null distribution of the BF under our prior setting and show that a Bayesian control of the false Discovery Rate can be obtained for genome-wide inference. Informative priors are introduced using prior evidence of association from a Kolmogorov-Smirnov test statistic. We use our simulation program, sim1000G, to generate RV data similar to the 1000 genomes sequencing project. Our simulation studies showed that the new BF statistic outperforms standard methods (SKAT, SKAT-O, Burden test) in case-control studies with moderate sample sizes and is equivalent to them under large sample size scenarios. Our real data application to a lung cancer case-control study found enrichment for RVs in known and novel cancer genes. It also suggests that using the BF with informative prior improves the overall gene discovery compared to the BF with noninformativeprior.