ABSTRACT Salt toxicity comprises of osmotic and ionic components both of which can severely affect root and shoot growth. In many crop species, supplemental calcium (Ca) reduces the inhibition of growth typical of exposure to salt stress. The objective of this study was to compare whole plant growth and physiological responses to interactive effect of salinity and Ca level on three forage species [African millet (AM), tall wheat grass (TW), and perennial ryegrass (PR)] differing in tolerance to sodium chloride (NaCl) salinity. Plants were grown under glasshouse condition and supplied with nutrient solution containing 0, 100, and 250 mM NaCl supplemented with 0.5, 5, or 10 mM calcium chloride (CaCl2). Plant growth, ionic concentration, water relations, and solute (proline and glycinebetaine) concentrations of the plants were determined two weeks after the salinity treatments. At 100 mM NaCl, there was a moderate reduction in dry matter (DM) production of all three species. A drastic decrease in DM occurred at 250 mM NaCl. Supplemental Ca reduced the adverse effects of salinity on all three species. The TW showed higher shoot and root growth in 100 and 250 mM NaCl than AM and PR. It also showed the highest DM at 5 and 10 mM Ca supplement. The shoot and root DM of TW increased by about 45 and 15%, respectively compared to the control. Chemical analysis indicated that in TW, Ca restricted both uptake and transport of sodium (Na) from root to shoot. It also increased Ca and potassium (K) concentrations in both organs. The transport of K and Ca from root to shoot of AM and PR were decreased by NaCl, but were restored with increasing Ca in the medium. The opposite occurred for Na. In PR, more K uptake was observed in shoot at 250 mM NaCl with 10 mM Ca supplement. The sap osmotic potential (ΨS) was the highest in TW at 10 mM Ca in the presence of 250 mM NaCl. Contribution of various solutes to the difference in ΨS among the species from the control and 250 mM salt treatment differed greatly. Supplemental Ca induced decline in the leaf ΨS of TW which was predominately due to K, glycinebetaine, Na and proline accumulation. Addition of 10 mM Ca to the growth medium maintained a low Na and a high K level. Accumulation of glycinebetaine and proline in leaf contributed the NaCl tolerance of TW. The presented results suggest that supplement Ca, not only improved ionic relations but also induced plant ability in production of compatible solutes (glycinebetaine and proline) and osmotic adjustment. Accordingly, genotype dependent capacity could be found using supplemental Ca.
Read full abstract