AbstractThe manganese mono‐iodide [HC(CMeNAr)2]MnI(THF) (Ar = 2,6‐iPr2C6H3) (3) was prepared in good yield from the reaction of [HC(CMeNAr)2]K with MnI2 in THF. Treatment of 3 under reflux in toluene and removing all the volatiles in vacuo afforded the dimeric compound [{HC(CMeNAr)2}Mn]2(μ‐I)2 (4). Displacement of the coordinated THF in 3 by a strong Lewis base C[N(iPr)CMe]2 or by adding C[N(iPr)CMe]2 to the toluene solution of 4 readily gave the N‐heterocyclic carbene adduct [{HC(CMeNAr)2}]MnI{C[N(iPr)CMe]2} (5). Reduction of 5 with sodium/potassium alloy at room temperature unexpectedly resulted in the formation of the monomeric compound [{HC(CMeNAr)2}]MnNHAr{C[N(iPr)CMe]2} (6). Alternatively 6 was obtained by the salt elimination reaction of 5 with LiNHAr. Compounds 5 and 6 are the first examples of divalent manganese N‐heterocyclic carbene adducts and the first manganese non‐carbonyl carbene complexes. The single crystal X‐ray structural analyses reveal that compounds 3 and 6 are monomeric and compound 4 is dimeric in the solid state. The manganese centers in these compounds exhibit a distorted tetrahedral geometry. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)
Read full abstract