The Phene Plate system for typing Salmonella serotypes (PhP-S) is a simple automated typing method based on biochemical fingerprinting. It gives a quantitative value of the metabolism of various substrates by measuring the speed and intensity of each reaction. The 'biochemical fingerprint' of each isolate is used to calculate similarities among the tested strains with a personal computer program. We used this system to examine a collection of 86 strains of Salmonella enteritidis isolated from human sporadic cases in Germany between 1980 and 1992. Twenty-three biochemical phenotypes (BPTs) consisting of 9 common (C) and 14 single (S) BPTs were identified. BPTs C2 and C4 containing 20 and 36 strains respectively accounted for 65% of the isolates. Strains of BPT C2 were found over a wide period of time whereas strains of BPT C4 were isolated during the period between 1988 and 1992. With phage typing, 11 discrete phage types (PTs) and 18 strains designated as non-specific type (NST) were identified. PTs 4 and 8 with 39 and 17 strains respectively were the dominant PTs. Strains of PT 8 were isolated over a wide period of time whereas all (except one) strains of PT 4 were isolated between 1988 and 1992. Combination of biochemical fingerprinting and phage typing divided the strains into 25 phenotypes (BPT:PTs). Whilst phenotype C2:8 was found over a number of different years, phenotype C4:4 was isolated only between 1988 and 1992. These findings indicate the presence of one persistent and one recently emerged phenotype among S. enteritidis strains in Germany.(ABSTRACT TRUNCATED AT 250 WORDS)