In this study, we have investigated the effect of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on endocrine signalling, growth and development in Atlantic salmon ( Salmo salar) embryos and larvae. Expression of genes related to the hypothalamic–pituitary–thyroid (HPT) axis, growth-hormone/insulin-like growth factor (GH/IGF) axis and the steroid hormone axis were used as indicators of endocrine disruption. We also studied bone development in larvae, both by observing skeletal structure formation and by investigating expression of genes involved in ossification process. Atlantic salmon embryos, kept in plastic tanks at 5–7 °C, were exposed to 100 μg/L PFOA or PFOS from egg stage for a period of 52 days, followed by one-week recovery period. Sampling was performed at day 21, 35, 49 and 56 representing age 549, 597, 679 and 721 dd (dd or day degrees = number of days × temperature in degree Celsius: °C). Note that day 56 or 721 dd is the end of the 1-week recovery period. Larvae were divided into designated head and body regions for the purpose of gene expression analysis, except for genes that regulate ossification that were analyzed in whole larvae. Expression of thyroid receptor α and β (TRα and TRβ), thyroid-stimulating hormone β (TSHβ), T 4 outer-ring deiodinase (T 4ORD), growth hormone (GH), insulin-like growth factor-I and II (IGF-I and II), insulin-like growth factor I receptor (IGF-IR), and estrogen receptor α and β (ERα and ERβ) were investigated using quantitative PCR. Both PFOS and PFOA exposure produced non-significant alterations in larvae weight (except after the recovery period when a decrease was observed), while larvae length was unaffected. PFOS and PFOA exposure produced body- and head region-specific alterations in expression of all the investigated gene transcripts. Expression of IGF-I and IGF-IR paralleled that of GH, indicating that perturbation of GH expression is a possible end point for disruption of the GH–IGF axis. We did not observe developmental changes related to angiogenesis, ossification and chondrogenesis after exposure to PFOS and PFOA. Transcriptional abnormalities may serve as indicators of chronic exposure, although the concrete mechanisms causing the observed effects remain ambiguous. The implications of these findings for the complete lifecycle, including other developmental and/or reproductive damage, are areas of future study.
Read full abstract